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Abstract

The rapid advancements in Multimodal Large
Language Models (MLLMs) have garnered sig-
nificant research attention and revolutionized
various domains, including time series anal-
ysis. Notably, time series data can be repre-
sented in diverse modalities, making it highly
compatible with the progress of MLLMs. This
survey provides a comprehensive overview of
time series analysis in the era of multimodal
LLMs. We systematically summarize existing
work from two perspectives: data (taxonomy of
time series modalities) and models (taxonomy
of multimodal LLMs). From a data perspec-
tive, we emphasize that time series, tradition-
ally represented as a sequence of numbers with
temporal order, can also be expressed in modal-
ities such as text, images, graphs, audios, and
tables. From a model perspective, we explore
MLLMs that are either applicable or hold poten-
tial for specific time series modalities. Finally,
we identify future research directions and key
challenges at the intersection of time series and
MLLMs, including the video modality, reason-
ing, agents, interpretability, and hallucinations.
We curate and maintain a GitHub repository to
facilitate the latest developments in this rapidly
evolving field at HERE.

1 Introduction

Multimodal Large Language Models (MLLMs)
have demonstrated unprecedented capability across
diverse domains, marking a stride toward Artifi-
cial General Intelligence (AGI). For example, GPT-
4 (Achiam et al., 2023) has achieved human-level
performance on multiple benchmarks, ranking the
top 10% of test takers in an exam.

The success of MLLMs has opened vast opportu-
nities in time series analysis. Time series, tradition-
ally represented as a temporally ordered sequence
of numbers, can be flexibly expressed across di-
verse modalities, including text, images, graphs,
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Figure 1: Time series, traditionally represented as a
temporally ordered sequence of numbers, can be flexibly
represented in number, text, image, graph, audio, and
table formats, enabling multimodal LLMs to process
them effectively.

audios, and tables. As shown in Figure 1, time se-
ries in various modalities can be fed into MLLMs
to process. Below, we highlight key connections
between time series and other modalities:
Numbers. Time series is inherently a sequence of
temporally ordered numerical values. The numer-
ical sequences can be directly trained to develop
large-scale time series foundation models (Garza
et al., 2023), excelling in zero-shot or few-shot nu-
merical tasks without requiring modality adaption.
However, it is computationally expensive to build
time series foundation models at scale and suffers
from limited interpretability (Shi et al., 2024).
Text. Time series can be tokenized into textual
representation, enabling the application of LLM
methodologies (Gruver et al., 2024). This approach
leverages the sequential nature shared between text
(as ordered tokens) and time series (as ordered
numerical values). However, the text format of
time series may suffer from a modality gap be-
tween text and numbers. For instance, MLLMs
make surprising errors in the basic numerical tasks,
like incorrectly evaluating 9.11 > 9.9 (Yang et al.,
2024a). Furthermore, the limited input context of
LLMs (Ding et al., 2024) poses challenges to fit
high-dimensional multivariate time series (MTS).
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Table 1: Summary of the six time series modalities in the era of multimodal LLMs. TS: time series; UTS: univariate
time series; MTS: multivariate time series.

Modality TS Type Advantage Limitation Domain

Number UTS, MTS Raw time series; Computationally expensive; GeneralEliminate modality adaption Limited interpretability

Text UTS, MTS Easily integrate with Modality gap; General, Urban,
various LLM methodologies Limited input context length Finance, Healthcare

Image UTS, MTS Visual representation of TS; Sensitive to resolution; General,
Robust for irregularly sampled TS Challenging for MTS Finance, Healthcare

Graph MTS Capture inter-variate dependencies Not applicable for UTS; General, Urban,
Non-trivial to build a graph Finance, Healthcare

Audio UTS, MTS Easily integrate with Specialized audio preprocessing; Audioaudio processing techniques Computational & memory overhead

Table UTS, MTS Preserve both temporal Lose sequential dependency Generaland channel-specific information without indicating the time dimension

Images. Time series can be visualized as images to
enable pattern recognition via vision encoders (Li
et al., 2024c). The image representation provides
an intuitive and robust way to capture temporal
characteristics, even in challenging scenarios like
irregularly sampled data (Xu et al., 2025). How-
ever, the resolution of the generated images can
significantly impact model performance, and effec-
tively visualizing high-dimensional MTS as images
remains a challenging open issue.
Graphs. Multivariate time series can be structured
as graphs by treating channels (i.e., univariate time
series) as nodes and defining edges based on inter-
channel relationships (Chen et al., 2023c). Such
representation is valuable for tasks requiring the
understanding of inter-channel dynamics like spa-
tiotemporal modeling. However, this approach is
not applicable for univariate time series (UTS), and
and constructing an effective graph is non-trivial.
Audios. Time series naturally aligns with audio
data, as audio signals are fundamentally sequences
of numerical amplitudes over time (Yang et al.,
2021). Techniques such as spectrogram analy-
sis (Wang et al., 2019) in audio processing share
similarities with frequency-domain transformations
in time series analysis. However, audio-based rep-
resentation often requires specialized audio prepro-
cessing approaches and incurs intensive computa-
tional and memory overhead.
Tables. Time series can be structured into a tab-
ular format, where rows correspond to time steps
and columns represent channels. This represen-
tation ensures the preservation of both temporal
dynamics and channel-specific information (Wang
et al., 2024b) of time series. However, tabular repre-
sentation may lose sequential dependencies unless
explicitly indicating the time dimension.
We summarize the characteristics of the six differ-
ent time series modalities in Table 1. The versatility

of time series across multiple modalities aligns with
the evolution of MLLMs, which have expanded
from text-based processing to multimodal capabil-
ity. This motivates our survey to explore time series
analysis in the age of MLLMs.

To the best of our knowledge, this is a very early
survey to review recent advancements on time se-
ries analysis in the era of MLLMs. We begin by
introducing the background of time series analysis
and multimodal LLMs (Section 2). Next, we sum-
marize the literature from the perspective of data
and models: taxonomy of time series modalities
(Section 3) and taxonomy of multimodal LLMs
(Section 4). To facilitate comparison, we present
an overview of time series modalities and represen-
tative MLLMs in Table 2 and Table 3, respectively.
Finally, we explore future research directions and
open challenges (Section 5). In summary, the key
contributions of this survey are:

• We present a comprehensive survey of time
series analysis in the era of MLLMs, system-
atically summarizing existing work from the
view of data and models.

• From a data perspective, we categorize time
series into six different modalities: numbers,
text, images, graphs, audios, and tables. We
highlight their unique advantages, limitations,
and applications, drawing insights from rele-
vant literature.

• From a model perspective, we introduce rep-
resentative MLLMs that are either currently
applicable or hold potential for specific time
series modalities, offering a valuable resource
for time series researchers.

• We outline future research directions and open
challenges, including video-based time series,
reasoning, agents, interpretability, and halluci-
nations, to advance time series analysis in the
evolving MLLMs landscape.
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2 Background

In this section, we introduce the background knowl-
edge of time series analysis and multimodal LLMs.

2.1 Time Series Analysis

Time series analysis has long been a fundamen-
tal area of research (Hamilton, 2020), typically
involving tasks such as classification, forecast-
ing, anomaly detection, and imputation. Early
approaches relied on statistical and traditional
machine learning methods like ARIMA (Ahmed
and Cook, 1979) and SVM (Jin et al., 2007).
With the advent of deep learning, models such
as CNNs (Wu et al., 2018; Yao et al., 2019),
RNNs (Cheng et al., 2018; Madan and Mangipudi,
2018), LSTMs (Wang et al., 2022; Xu et al., 2023b),
GNNs (Chai et al., 2018; Zhu et al., 2022), Trans-
formers (Wen et al., 2022; Yıldız et al., 2022), and
SSMs (Rangapuram et al., 2018; Xu et al., 2024)
have demonstrated superior performance by effec-
tively capturing complex temporal patterns.

Recently, the emergence of LLMs have revolu-
tionized time series analysis. A straightforward ap-
proach is to treat time series as a form of natural lan-
guage, harnessing the powerful capability of LLMs.
Two recent surveys (Zhang et al., 2024c; Jiang
et al., 2024) discuss this intersection. (Zhang et al.,
2024c) examines various methodologies for apply-
ing LLMs to time series and offers an overview of
multimodal datasets. (Jiang et al., 2024) reviews
existing methods that employs LLMs for time se-
ries analysis and their domain-specific applications.
However, the rapid evolution of MLLMs, which
extend from text to diverse modalities, has opened
new opportunities for time series analysis. In this
survey, we emphasize time series work in the era of
MLLMs and discuss existing work from data and
model perspectives.

2.2 Multimodal Large Language Models

The evolution of MLLMs originates from text-only
foundational models such as BERT (Devlin et al.,
2018), GPT (Radford et al., 2018), and T5 (Raffel
et al., 2020). Subsequent advancements in LLMs
are driven by scaling laws (Kaplan et al., 2020) and
the integration of multimodal inputs, leading to
increasingly larger and stronger models like GPT-
4 (Achiam et al., 2023), Gemini-1.5 (Team et al.,
2024), and Llama-3.2 (Grattafiori et al., 2024).
Modern MLLMs are able to effectively process di-
verse modalities and develop various applications,
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Figure 2: The architecture of multimodal LLMs com-
prises of three core components: a modality encoder, an
adapter, and a LLM. The modality encoder processes
input from a specific modality (e.g., time series, image,
audio, etc.); the adapter bridges the gap between the
modality-specific representation and textual embedding;
and the LLM receives, processes, and reasons over both
the textual and modality-aligned information.

including text (Liang et al., 2024; Huang et al.,
2024a), images (Liu et al., 2024b; Hu et al., 2024),
audios (Zhang et al., 2023a; Huang et al., 2024b).

As shown in Figure 2, a MLLM typically con-
sists of three key components: a modality encoder,
a LLM, and an adapter that bridges them (Yin et al.,
2023; Caffagni et al., 2024; Zhang et al., 2024a).
The modality encoder processes non-text inputs,
such as images and audios, analogous to human
sensory organs that capture visual or auditory in-
formation. The LLM handles both text inputs and
processed modality-specific embeddings, function-
ing as a cognitive center to interpret and reason
over the received data. The adapter plays a crucial
role in aligning textual and modality-specific rep-
resentation. Its design is particularly significant,
as the modality encoder and LLM are generally
frozen during training, leaving only the adapter
trainable. The architecture of adapters ranges from
lightweight MLP layers to more complex imple-
mentations, such as Q-Former (Li et al., 2023) and
P-Former (Jian et al., 2024).

3 Taxonomy of Time Series Modalities

In this section, we discuss time series modalities,
including numbers, text, images, graphs, audios,
and tables. The taxonomy is provided in Table 2.

3.1 Time Series as Numbers
The raw time series is a sequence of numbers or-
dered chronologically:
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Table 2: Taxonomy of time series modalities.

Method Modality Domain Task Modality Alignment Strategy LLM

TimeGPT (Garza et al., 2023) Number General Forecasting None Transformer
Lag-Llama (Rasul et al., 2023) Number General Forecasting None Llama
TimesFM (Das et al., 2023) Number General Forecasting None Decoder-only Transformer
Timer (Liu et al., 2024i) Number General General None Decoder-only Transformer
MOIRAI (Woo et al., 2024) Number General Forecasting None Encoder-only Transformer
MOMENT (Goswami et al., 2024) Number General General None Encoder-only T5
Chronos (Ansari et al., 2024) Number General Forecasting None T5
TIME-MOE (Shi et al., 2024) Number General Forecasting None Decoder-only Transformer
Mantis (Feofanov et al., 2025) Number General Classification None Vision Transformer
TimesBERT (Zhang et al., 2025) Number General General None BERT

PromptCast (Xue and Salim, 2023) Text General Forecasting Direct Querying GPT-3.5, T5, etc.
OFA (Zhou et al., 2023) Text General General Fine-Tuning GPT-2, BERT, etc.
LLM4TS (Chang et al., 2023) Text General Forecasting Fine-Tuning GPT-2
TEST (Sun et al., 2023) Text General General Text-Prototype-Aligned Contrast GPT-2, BERT, etc.
TIME-LLM (Jin et al., 2023) Text General Forecasting Reprogramming Llama
TEMPO (Cao et al., 2023) Text General Forecasting Semi-Soft Prompting GPT-2
LLMTIME (Gruver et al., 2024) Text General Forecasting Tokenization GPT-3, Llama-2
UniTime (Liu et al., 2024g) Text General Forecasting Tokenization GPT-2
AutoTimes (Liu et al., 2024h) Text General Forecasting In-Context Forecasting Llama
(Tang et al., 2025) Text General Forecasting Tokenization GPT-4, Gemini-1.0, etc.
LSTPrompt (Liu et al., 2024d) Text General Forecasting Prompting GPT-4, GPT-3.5
S2IP-LLM (Pan et al., 2024) Text General Forecasting Semantic Space Informed Prompting GPT-2
InstructTime (Cheng et al., 2024a) Text General Classification Fine-Tuning GPT-2
CrossTimeNet (Cheng et al., 2024b) Text General General Fine-Tuning BERT
GPT4MTS (Jia et al., 2024) Text General Forecasting Fine-Tuning GPT-2
Time-MMD (Liu et al., 2024c) Text General Forecasting Fine-Tuning GPT-2
ChatTime (Wang et al., 2024a) Text General General Fine-Tuning Llama-2
TimeRAG (Yang et al., 2024c) Text General Forecasting Reprogramming Llama-3
DECA (Hu et al., 2025) Text General General Context-Alignment GPT-2
TaTS (Li et al., 2025) Text General General Tokenization GPT-2 Encoder
AuxMobLCast (Xue et al., 2022) Text Urban Forecasting Fine-Tuning BERT, GPT-2, etc.
LLM-Mob (Wang et al., 2023) Text Urban Classification Context-Inclusive Prompting GPT-3.5
xTP-LLM (Guo et al., 2024) Text Urban Forecasting Fine-Tuning Llama-2
(Xie et al., 2023) Text Finance Classification Direct Querying ChatGPT
(Lopez-Lira and Tang, 2023) Text Finance Forecasting Direct Querying ChatGPT
(Yu et al., 2023) Text Finance Forecasting Direct Querying GPT-4, Llama
FinSeer (Xiao et al., 2025) Text Finance Forecasting Fine-Tuning Llama-3.2
(Liu et al., 2023) Text Healthcare General Direct Querying PaLM
MedTsLLM (Chan et al., 2024) Text Healthcare General Reprogramming Llama-2

Insight Miner (Zhang et al., 2023d) Image General Trend Description Llava Llava
(Daswani et al., 2024) Image General Understanding GPT-4o, Gemini-1.5 GPT-4o, Gemini-1.5
AnomLLM (Zhou and Yu, 2024) Image General Anomaly Detection GPT-4o, Gemini-1.5, etc. GPT-4o, Gemini-1.5, etc.
TimeSeriesExam (Cai et al., 2024) Image General Question Answering GPT-4o, Gemini-1.5, etc. GPT-4o, Gemini-1.5, etc.
TAMA (Zhuang et al., 2024) Image General Anomaly Detection GPT-4o GPT-4o
VLM-TSC (Prithyani et al., 2024) Image General Classification Llava Llava
Time-VLM (Zhong et al., 2025) Image General Forecasting ViLT ViLT
VisualTimeAnomaly (Xu et al., 2025) Image General Anomaly Detection GPT-4o, Gemini-1.5, etc. GPT-4o, Gemini-1.5, etc.
Agent Trading Arena (Ma et al., 2025) Image Finance Simulation GPT-4o, Gemini-1.5 GPT-4o, Gemini-1.5
ViTST (Li et al., 2024c) Image Healthcare Classification Swin Transformer RoBERTa
METS (Li et al., 2024a) Image Healthcare Classification ResNet1d-18 ClinicalBert
HeLM (Belyaeva et al., 2023) Image Healthcare Classification ResNet18 Flan-PaLMChilla

GATGPT (Chen et al., 2023a) Graph General Imputation GAT GPT-2
LLM-OSR (Yan et al., 2024) Graph General Imputation Graph Signal Processing GPT-4o, GPT-3.5
STLLM (Zhang et al., 2023b) Graph Urban Forecasting GCN GPT-3.5
ST-LLM (Liu et al., 2024a) Graph Urban Forecasting Spatial-Temporal Embedding GPT-2, Llama-2
STG-LLM (Liu et al., 2024f) Graph Urban Forecasting STG-Tokenizer/Adapter GPT-2
STGCN-L (Li et al., 2024b) Graph Urban Forecasting STGCN GPT-4
(Qin et al., 2024) Graph Urban Imputation None GPT-3.5
Strada-LLM (Moghadas et al., 2024) Graph Urban Forecasting Hierarchical Feature Extractor Mistral
(Chen et al., 2023c) Graph Finance Classification GNN ChatGPT
LA-GCN (Xu et al., 2023a) Graph Healthcare Classification GCN BERT

Voice2Series (Yang et al., 2021) Audio Audio Classification Reprogramming Transformer

TableTime (Wang et al., 2024b) Table General Classification Table Encoding Llama-3.1
TabPFN-TS (Hoo et al., 2025) Table General Forecasting Feature Engineering TabPFN

Formulation. A time series can be denoted as
X = {x1, . . . ,xT } ∈ RT×M with T time steps
and M variates, where xt ∈ RM carries M nu-
merical values at the tth time steps.

Inspired by the remarkable development of foun-
dation models in NLP, time series researchers
are working toward building "time series LLMs."
These foundation models are trained on vast
amounts of time series data from scratch and are
competent in zero-shot or few-shot numerical tasks
without additional modality adaptation (Garza
et al., 2023; Shi et al., 2024; Feofanov et al., 2025).

Similar to LLMs, time series foundation mod-
els follow three primary architectural paradigms:

encoder-decoder, encoder-only, and decoder-only.
The encoder-decoder architecture is from vanilla
Transformer (Vaswani, 2017) where the encoder
transforms an input sentence into representation
and the decoder generates the output sequence to-
ken by token, based on the encoded representation
and previously decoded tokens. TimeGPT (Garza
et al., 2023) and Chronos (Ansari et al., 2024)
adopt this approach. Encoder-only frameworks
generate multi-step predictions in a single forward
pass, eliminating the need for autoregressive de-
coding and mitigating error accumulation (Zeng
et al., 2023), including MOIRAI (Woo et al., 2024),
MOMENT (Goswami et al., 2024), and Times-
BERT (Zhang et al., 2025). Mantis (Feofanov et al.,
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2025) employs the adaption of Vision Transformer
(ViT) (Dosovitskiy, 2020) architecture, which is
an encoder-only framework. In contrast, decoder-
only architectures such as Lag-Llama (Rasul et al.,
2023), TimesFM (Das et al., 2023), Timer (Liu
et al., 2024i), and TIME-MOE (Shi et al., 2024)
emphasize sequential dependencies and employ
autoregressive prediction. Notably, (Rasul et al.,
2023) and (Liu et al., 2024i) observe that decoder-
only models are more effective with larger training
datasets compared to other architectures.

The key advantage of time series foundation
models is their ability to perform numerical fore-
casting without requiring modality adaptation. Un-
like LLM-based approaches that often require
alignment between textual and numerical represen-
tation, these models inherently generate accurate
numerical forecasts on unseen datasets, eliminat-
ing the need for modality adaptation. However,
they often face computation challenges. To miti-
gate the issue, TTMs (Ekambaram et al., 2024) and
Time-MOE (Shi et al., 2024) leverage lightweight
backbones and Mixture-of-Experts (MoEs) (Fe-
dus et al., 2022) architectures to improve effi-
ciency. Built on the TTM, TimeRAF (Zhang et al.,
2024b) enhances zero-shot time series forecast-
ing by Retrieval-Augmented Generation (RAG)
techniques (Lewis et al., 2020). Additionally,
these methods are limited in their ability to gen-
erate human-readable outputs, which hinders in-
terpretability and poses significant challenges for
high-stakes applications, like the healthcare do-
main (Shaheen, 2021) and natural disaster predic-
tion (Tan et al., 2021).

3.2 Time Series as Text

The time series can be encoded into textual repre-
sentation:

Formulation. A time series X =
{x1, . . . ,xT } ∈ RT×M can be serialized
into a string U using preprocessing methods
such as delimiter-based separation (e.g., spaces
or commas). The string U is then tokenized into
a sequence of textual tokens S = {s1, . . . , sN},
where N represents the tokenized length of the
sequence S. This representation enables time
series data to be processed by language models.

The integration of text-based time series with
LLMs mainly involves four methodologies (Jiang
et al., 2024): direct querying, tokenization, prompt-
ing, and fine-tuning techniques.

Direct querying is a straightforward method to
leverage LLMs. By framing time series forecasting
as a sentence-to-sentence generation task, Prompt-
Cast (Xue and Salim, 2023) directly apply LLMs to
forecast numerical data. Direct querying can be en-
hanced by specialized tokenization and prompting
techniques, like Chain-of-Thought (CoT) (Light-
man et al., 2023). For example, LSTPrompt (Liu
et al., 2024d) integrates CoT into prompts to form
reasoning path for predictions. The querying can
also obtain benefits from a external time series
knowledge base (Yang et al., 2024c; Xiao et al.,
2025) by Retrieval-Augmented Generation (RAG).
In the real-world scenarios, direct querying is of-
ten facilitated by integrating with domain exper-
tise (Lopez-Lira and Tang, 2023; Yu et al., 2023;
Wang et al., 2023; Liu et al., 2023).

Simple tokenization methods like LLM-
Time (Gruver et al., 2024) represent time series by
adding spaces and commas. More tokenization
designs integrate with time series inductive biases.
The STL decomposition (Seasonal and Trend
decomposition using Loess) (Cleveland et al.,
1990) is a classical decomposition technique in
time series studies (Tang et al., 2025; Liu et al.,
2024d). For example, TEMPO (Cao et al., 2023)
and S2IP-LLM (Pan et al., 2024) learn distinct
time series embeddings for trend, seasonal, and
residual components. Other common strategies
include reversible instance normalization (Kim
et al., 2021a), channel independence (Zeng et al.,
2023), and patching (Nie et al., 2022), which
help mitigate distribution shifts and preserve local
information in time series data. These methods
are widely integral to time series models (Sun
et al., 2023; Jin et al., 2023; Cheng et al., 2024b;
Jia et al., 2024). Additionally, ChatTime (Wang
et al., 2024a) regards time series as a foreign
language. TaTS (Li et al., 2025) treats text as
auxiliary variables associated with the time series.

The advanced prompting techniques incorpo-
rate contextual information (Jin et al., 2023; Liu
et al., 2024g; Tang et al., 2025; Cheng et al.,
2024a), which is crucial for domain-specific ap-
plications (Xie et al., 2023; Wang et al., 2023; Guo
et al., 2024). For example, (Yu et al., 2023) feeds
the latest news into LLMs to predict stock move-
ments. MedTsLLM (Chan et al., 2024) incorpo-
rates patient profiles and dataset statistics for med-
ical analysis. AuxMobLCast (Xue et al., 2022)
appends Place-of-Interest (POI) data for customer
flow prediction. Another key technique is CoT
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prompting, which enables LLMs to reason through
predictions step by step (Liu et al., 2024d; Xie et al.,
2023; Guo et al., 2024).

Fine-tuning pre-trained LLMs is essential
for adapting them to downstream time series
tasks (Chang et al., 2023; Jia et al., 2024). Many
fine-tuning approaches aligns textual prompts with
numerical values within a shared representation
space to effectively activate LLMs’ capability (Cao
et al., 2023; Wang et al., 2024a). For exam-
ple, DECA (Hu et al., 2025) proposes Context-
Alignment paradigm to achieve alignment between
time series and a linguistic component. However,
fine-tuning all layers is computationally expen-
sive and may lead to catastrophic forgetting (Kirk-
patrick et al., 2017). A common solution is
to update partial layers, where models such as
OFA (Zhou et al., 2023) and GPT4MTS (Jia
et al., 2024) freeze attention and feed-forward lay-
ers to retain majority knowledge of LLMs. An-
other efficient approach is Low-Rank Adaptation
(LoRA) (Hu et al., 2021), which attaches a trainable
low-rank matrix to the attention mechanism (Cao
et al., 2023; Wang et al., 2024a; Xiao et al., 2025).
Instead of fine-tuning LLMs, Time-MMD (Liu
et al., 2024c) fine-tunes unimodal time series mod-
els and a projection layer to bridge numerical and
textual representation spaces.

The primary advantage of text-based time series
is their seamless compatibility with LLM method-
ologies, such as CoT prompting and fine-tuning.
However, their performance is limited by two key
challenges: the inherent representation gap be-
tween textual and numerical data (Gruver et al.,
2024) and the constrained input context length of
LLMs (Prithyani et al., 2024). For example, the
GPT-3 tokenizer tends to break a single number
into tokens that do not align with its digits (Gruver
et al., 2024), where one token may represent mul-
tiple digits. This can lead to incorrect evaluations
of basic arithmetic understanding, such as 9.11 >
9.9 (Yang et al., 2024a).

3.3 Time Series as Images

The time series can be visualized as images:

Formulation. A time series X =
{x1, . . . ,xT } ∈ RT×M can be converted
into an image format I like a line chart. This
transformation allows time series data to be
analyzed by MLLMs with a vision encoder.

Image-based time series, termed time series im-

ages (Xu et al., 2025), provides an intuitive way
to understand their patterns. This approach has
proven superiority over text- or number-based rep-
resentation across classification, forecasting, and
anomaly detection tasks (Prithyani et al., 2024;
Chen et al., 2024a; Zhou and Yu, 2024; Ni et al.,
2025), even for irregularly sampled time series
data (Li et al., 2024c; Xu et al., 2025).

Intuitively, MLLMs are more effective at coarse-
grained tasks like time series classification and
anomaly detection compared to fine-grained time
series forecasting. AnomLLM (Zhou and Yu, 2024)
evaluates LLMs in anomaly detection by testing
several pre-defined hypotheses. TAMA (Zhuang
et al., 2024) is a MLLM-based framework that en-
hances time series classification and anomaly de-
tection by analyzing time series images. VLM-
TSC (Prithyani et al., 2024) demonstrates that
Llava can produce competitive time series classifi-
cation results in two epochs of finetuning. Visual-
TimeAnomaly (Xu et al., 2025) finds that MLLMs
detect range- and variate-wise anomalies more ef-
fectively than point-wise anomalies like humans.

Although less straightforward, image-based time
series representation also benefit time series fore-
casting tasks. ViTime (Yang et al., 2024b) per-
forms time series forecasting in the binary image
space. VisionTS (Chen et al., 2024a) reformulates
time series forecasting as an image reconstruction
task. CLIP-LSTM (Wimmer and Rekabsaz, 2023)
employs CLIP (Radford et al., 2021) to extract
features from stock market line charts, which are
then fed into an LSTM (Hochreiter and Schmidhu-
ber, 1997) for stock movement prediction. While
these methods do not directly harness LLMs as
their backbones, they underscore the potential of
image-based time series representation. Different
from the above, Time-VLM (Zhong et al., 2025),
built on a vision-language model ViLT (Kim et al.,
2021b), augments time series forecasting by inte-
grating text and vision modalities.

The emergence of MLLMs unlocks novel tasks
such as time series understanding, reasoning, and
simulation (Daswani et al., 2024; Kong et al., 2025;
Ma et al., 2025), extending beyond traditional time
series tasks, including classification, forecasting,
anomaly detection, and imputation. By answering
questions related to time series images, MLLMs
can understand and reason over time series data. In-
sightMiner (Zhang et al., 2023d) queries MLLMs
to describe different stages of temporal trends.
(Daswani et al., 2024) demonstrates additional ben-

6



efits of visual time series representation over the
textual format. TimeSeriesExam (Cai et al., 2024)
designs a series of multiple-choice questions to
examine MLLMs’ capability to understand time se-
ries data. More interestingly, MLLMs can also sim-
ulate complex real-world scenarios, such as stock
markets. Agent Trading Arena (Ma et al., 2025)
simulates a zero-sum stock market environment
where MLLMs act as agents to make investment
decisions for stock portfolios.

A core advantage of image-based time series
representation is their robustness to irregular time
series (Xu et al., 2025) and adoption in the health-
care domain. Irregularly sampling is common in
healthcare applications (Sun et al., 2020); for exam-
ple, wearable devices often record sensor readings
at irregular intervals due to patient activity or con-
nectivity issues. The irregularity challenge can be
effectively addressed by time series images, where
missing values are left blank. ViTST (Li et al.,
2024c) converts irregular time series into images
and fine-tunes a Swin Transformer (Liu et al., 2021)
for medical time series classification. Moreover,
physiological indicators (e.g., ECG and spirogram)
are often stored as images. METS (Li et al., 2024a)
and HeLM (Belyaeva et al., 2023) feed the ECG
and spirogram into language models with a vision
encoder for multimodal learning. However, image-
based representation is sensitive to resolution and
present challenges in visualizing high-dimensional
multivariate time series. VisualTimeAnomaly (Xu
et al., 2025) highlights that MLLMs struggle with
high-dimensional multivariate time series images
due to the increased information density and re-
duced resolution per variate.

3.4 Time Series as Graphs

The time series can be structured into a graph:

Formulation. A time series X =
{x1, . . . ,xT } ∈ RT×M can be transformed into
a graph G = (V, E), where V = {v1, · · · , vM}
is the set of nodes, corresponding to variates,
and E = {e1, · · · , eE} is the set of edges,
defining inter-variate dependencies. This graph
representation enables MLLMs with a graph
encoder to model structure among variates.

Representing multivariate time series as graphs is
an effective approach to model inter-dependencies
among multiple variates. This is important for real-
world applications with highly complex relation-
ships like urban analytics (Zhang et al., 2023b).

Graph-based time series representation is im-
pactful in spatio-temporal problems, including net-
work traffic analysis, human mobility prediction,
and intelligent transportation systems (Wang et al.,
2020). GATGPT (Chen et al., 2023a) employs
GATs (Veličković et al., 2017) to capture spatial
dependencies while leveraging GPT-2 to model
temporal relationships for spatio-temporal impu-
tation. Similarly, STLLM (Zhang et al., 2023b),
ST-LLM (Liu et al., 2024a), STG-LLM (Liu et al.,
2024f), and STGCN-L (Li et al., 2024b) utilize
LLMs to extract additional urban information from
text-based data, such as POI tags and spatio-
temporal context. Strada-LLM (Moghadas et al.,
2024) advances traffic prediction by integrating
proximal traffic information into a graph-aware
LLM. Additionally, LLMs can online infer miss-
ing values in the spatial-temporal graph (Qin et al.,
2024; Yan et al., 2024).

The benefits of graph-based time series extend
to domains like finance and healthcare, where un-
derstanding intricate relationships between entities
is critical. (Chen et al., 2023c) leverages Chat-
GPT’s graph inference capability for stock move-
ment prediction. By inferring dynamic network
structures among companies from textual data, the
approach enhances graph embeddings, leading to
more accurate forecasts for the next trading day. In
healthcare, LA-GCN (Xu et al., 2023a) integrates
the prior knowledge of LLMs to augment GCNs
for skeleton-based action recognition. Specifi-
cally, BERT’s knowledge simulates brain regions
involved in action reasoning, aiding GCNs in mak-
ing more precise forecasts. However, graph-based
time series methods face limitations: they are in-
applicable to univariate time series, and it remains
challenging to construct an appropriate graph for
multivariate time series, such as determining the
directionality and weight of edges.

3.5 Time Series as Audios

The time series can be regarded as audio data:

Formulation. A time series X =
{x1, . . . ,xT } ∈ RT×M can be treated as
an audio signal, where each xt ∈ RM represents
the amplitude of M channels at the tth time
step. This representation allows MLLMs with
an audio encoder to handle.

Time series naturally aligns with the audio signal,
as audio data is fundamentally a sequence of numer-
ical amplitudes over time (Tzanetakis and Cook,
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2002). This correspondence enables the applica-
tion of audio foundation models and audio-specific
techniques (Yang et al., 2021).

Inspired by the similarity between voice data and
univariate temporal signals, Voice2Series (Yang
et al., 2021) reprograms pre-trained acoustic foun-
dation models for time series classification. To
harness the power of well-trained acoustic mod-
els, the approach introduces a trainable reprogram-
ming layer and a label mapping function, ensur-
ing alignment between the time series and audio
signals. Despite the inherent alignment between
audio and time series data, treating time series as
audio introduces additional complexity as it neces-
sitates audio preprocessing techniques. Moreover,
audio-based processing can be significantly more
resource-intensive in terms of both computation
and memory compared to directly handling numer-
ical time series data.

To the best of our knowledge, no more work ex-
plicitly connects time series tasks and audio data
within the context of MLLMs, suggesting a promis-
ing research direction. For instance, audio process-
ing techniques like spectrogram analysis (Wang
et al., 2019) and wavelet transforms (Zhang and
Zhang, 2019) could be adapted for univariate time
series to capture frequency-domain features and
multi-resolution patterns. Similarly, techniques
like beamforming (Xu et al., 2017) and source sep-
aration (Makino, 2018), common in multi-channel
audio processing, hold potential for advancing mul-
tivariate time series analysis.

3.6 Time Series as Tables

The time series can be formatted as a table:

Formulation. A time series X =
{x1, . . . ,xT } ∈ RT×M can be explicitly
represented as a table where each row cor-
responds to a time step t, and each column
represents a variate m.

The tabular format of time series preserves both
temporal and channel-specific information better
than serializing them into a textual format when
processed by MLLMs (Wang et al., 2024b).

TableTime (Wang et al., 2024b) reformulates
multivariate time series classification as a table un-
derstanding task. Specifically, it converts time se-
ries into a tabular format and feed them into Llama
for zero-shot classification. TabPFN-TS (Hoo
et al., 2025) harnesses the tabular foundation model
TabPFN (Hollmann et al., 2022) for time series

forecasting. Despite its compact size of only
11M parameters and a simple feature engineer-
ing approach, TabPFN-TS outperforms Chronos-
Mini (Ansari et al., 2024), a model of compara-
ble scale, and matches or even slightly exceeds
Chronos-Large, which is 65 times larger. While
table-based time series representations can preserve
both temporal and channel-specific information,
they may lose sequential dependencies if the time
dimension is not explicitly indicated.

4 Taxonomy of Multimodal LLMs

While numerous LLMs are dedicated to text and im-
ages modalities, other modalities remain largely un-
explored. In this section, we briefly outline text &
image-compatible LLMs, and discuss LLMs which
are compatible with less-explored modalities. Note
that the comprehensive discussion of MLLMs is
a broad and extensive topic beyond the scope of
this survey. Instead, we focus on representative
MLLMs to offer a resource for future research in
time series. The taxonomy is provided in Table 3.

4.1 Text & Image-Compatible LLMs
Among various modalities, the integration of text
and images has received the most attention, as lan-
guage and vision are two fundamental ways hu-
mans perceive and interact with the world. Text &
image-compatible LLMs can be categorized based
on code accessibility into proprietary and open-
source models. Proprietary MLLMs, such as GPT-
4 (Achiam et al., 2023), Gemini-1.5 (Team et al.,
2024), and Claude-3 (Anthropic, 2024), are not
publicly available but can be accessed through
APIs provided by their respective companies. In
contrast, open-source MLLMs, including Llama-
3.2 (Grattafiori et al., 2024), Qwen2.5-VL (Bai
et al., 2025), and InternVL-2.5 (Chen et al., 2024c),
allow researchers and developers access code or
weights. An extensive discussion of text & image-
compatible LLMs is beyond the scope of this work;
we refer readers to existing surveys (Yin et al.,
2023; Caffagni et al., 2024; Zhang et al., 2024a).

4.2 Graph-Compatible LLMs
Graph-compatible LLMs include models designed
specifically for spatio-temporal problems or gen-
eral graph tasks. UrbanGPT (Li et al., 2024d) tai-
lors a spatio-temporal LLM for urban applications
by incorporating a multi-level temporal convolu-
tional network (Lea et al., 2016) to capture com-
plex dependencies. It aligns textual and spatio-
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Table 3: Taxonomy of representative multimodal LLMs.

Method Modality Task Modality Encoder Adapter LLM

GPT-4 (Achiam et al., 2023) Text & Image General Close-Source Close-Source Close-Source
Gemini-1.5 (Team et al., 2024) Text & Image General Close-Source Close-Source Close-Source
Claude-3 (Anthropic, 2024) Text & Image General Close-Source Close-Source Close-Source
Llama-3.2 (Grattafiori et al., 2024) Text & Image General ViT Cross-Attention Llama-3.1
Qwen2.5-VL (Bai et al., 2025) Text & Image General ViT MLP Qwen2.5
InternVL-2.5 (Chen et al., 2024c) Text & Image General InternViT MLP InternLM-2.5, Qwen2.5

UrbanGPT (Li et al., 2024d) Graph General Temporal Convolutional Network MLP Vicuna
STD-PLM (Huang et al., 2024c) Graph General Spatial-Temporal Tokenizer None GPT-2
LLaGA (Chen et al., 2024b) Graph General Node-Level Template MLP Vicuna

SpeechGPT (Zhang et al., 2023a) Audio General HuBERT None Llama
AudioGPT (Huang et al., 2024b) Audio General Whisper, GenerSpeech, etc. None GPT-3.5
MinMo (Chen et al., 2025) Audio General SenseVoice Transformer + CNN Qwen2.5

TabPFN (Hollmann et al., 2022) Table General None None PFN
TableLlama (Zhang et al., 2023c) Table General None None Llama
TableGPT2 (Su et al., 2024a) Table General Bi-Dimensional Attention Q-Former Qwen2.5

temporal data through instruction-tuning on Vi-
cuna (Zheng et al., 2024) through a lightweight
MLP. STD-PLM (Huang et al., 2024c) utilizes
LoRA to fine-tune multi-head attention and posi-
tional embeddings. It enhances effectiveness with
a spatial-temporal tokenizer and a sandglass at-
tention module that captures higher-order region-
level dependencies. Different from the two ap-
proaches which focus on spatio-temporal model-
ing, LLaGA (Chen et al., 2024b) is universally
applicable for general graph tasks, including node
classification, link prediction, and node description.
It reorganizes graph data into node sequences with
a node-level template and aligns graph and token
spaces by a versatile projector MLP.

4.3 Audio-Compatible LLMs

Audio-compatible LLMs have significant poten-
tial for time series tasks, as both audio data and
time series share inherent sequential patterns, tem-
poral dependencies, and dynamic variations over
time. SpeechGPT (Zhang et al., 2023a) is a speech-
language model capable of perceiving and gener-
ating both speech and text. Trained on speech-
text cross-modal and chain-of-modality instruction
fine-tuning datasets, SpeechGPT demonstrates a
strong ability to follow cross-modal instructions
from humans. Rather than training from scratch,
AudioGPT (Huang et al., 2024b) integrates vari-
ous audio foundation models with GPT-3.5-Turbo
for a wide range of audio tasks, including speech,
music, sound processing, and talking head syn-
thesis. For instance, AudioGPT employs Whis-
per (Radford et al., 2023) to perform speech recog-
nition. Minmo (Chen et al., 2025), an end-to-end
aligned MLLM, achieves SOTA performance on
several open-source audio benchmarks, including
spoken dialogue, multilingual speech recognition,
and speech translation.

4.4 Table-Compatible LLMs

Table-compatible LLMs have emerged as a pow-
erful paradigm for tackling tabular data chal-
lenges. Tabular data can be directly processed by
LLMs or LLMs with a specialized table encoder.
TabPFN (Hollmann et al., 2022) is a tabular foun-
dation Transformer pre-trained to capture complex
feature dependencies and causal mechanisms. It
can be adapted (Hoo et al., 2025) to outperform
specialized time series forecasters with minimal
feature engineering. TableLlama (Zhang et al.,
2023c) is a generalist model to tackle diverse ta-
ble tasks. It mitigates the long-context challenge
by fine-tuning Llama-2 with LongLoRA (Chen
et al., 2023b) on the newly constructed TableIn-
struct dataset. TableGPT2 (Su et al., 2024a) further
advances performance across 23 benchmarks by
training on 593.8K tables and 2.36M query-table-
output tuples. Its key innovation lies in a semantic
table encoder with bi-dimensional attention, en-
abling schema- and cell-level representation.

5 Future Directions and Challenges

In this section, we point out several promising fu-
ture research directions and their challenges.
Time Series as Videos. Video is a fundamental
modality representing a sequence of temporal im-
age frames. The temporal dependencies between
frames suggest that time series can be modeled
as video. (Zeng et al., 2021) formulates financial
time series forecasting as a video prediction task
by visualizing historical stock data of 9 assets in a
3×3 heatmap, where each pixel represents a relative
percentage change. They adapt a video prediction
network SRVP (Franceschi et al., 2020) to cap-
ture pixel changes for asset movement prediction.
Although the above work highlights the potential
of video-based time series modeling, it does not
leverage powerful capability of MLLMs.
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However, the paradigm of treating time series as
video faces two key challenges. First, numerical
forecasting is inherently a regression task requiring
precise continuous outputs, whereas video-based
models may struggle with fine-grained numerical
accuracy. Instead, the approach may be more suited
for high-level tasks like clarification and anomaly
detection. Second, video-compatible LLMs typi-
cally incur high computational and memory over-
head (Zolfaghari et al., 2018), making them imprac-
tical for time-sensitive applications, such as real-
time traffic prediction (Zhang et al., 2020) and high-
frequency trading (Levendovszky and Kia, 2012).
Time Series Reasoning. Reasoning is a hall-
mark of advanced intelligence and has recently gar-
nered significant attention, like DeepSeek-R1 (Guo
et al., 2025) and OpenAI-o1 (Jaech et al., 2024).
It is observed that LLMs show surprisingly lim-
ited zero-shot reasoning capability over time se-
ries data (Merrill et al., 2024). Specifically, they
score marginally above random on etiological rea-
soning and question answering tasks (up to 30%
points worse than humans). To bridge the gap, fine-
tuning LLMs demonstrates a promising path with
various techniques, such as a self-critic temporal
optimization method (Su et al., 2024b) and chain-
of-thought (Chow et al., 2024).

However, multimodal reasoning capability of
MLLMs, such as reasoning over image-based time
series and audio-based time series, remains largely
untapped. The key challenge in multimodal rea-
soning over time series lies in the seamless integra-
tion of various modalities. For example, in spatio-
temporal problems, reasoning must account for
both unstructured graph dependencies and temporal
dynamics. The incorporation of additional modali-
ties complicates the reasoning process. Moreover,
time series data lacks inherent semantic meaning,
making it difficult to design reasoning tasks (Kong
et al., 2025; Chow et al., 2024).
Time Series Agents. Agents represent a promising
step toward AGI (Wang et al., 2024c), enabling self-
planning and autonomous task execution. Recent
research has demonstrated the preliminary appli-
cation of time series agents. (Ravuru et al., 2024)
demonstrates the effectiveness of a hierarchical,
multi-agent approach for time series analysis with
RAG (Lewis et al., 2020). TimeCAP (Lee et al.,
2025) employs two independent LLM agents for
time series event prediction: one generates con-
textual information, while the other utilizes the
enriched summary to make more informed pre-

dictions. Agent Trading Arena (Ma et al., 2025)
simulates stock trading environments where agents
discuss market trends, analyze stock data, and en-
gage in trading activities.

While these studies emphasize the potential of
agent-based approaches, developing MLLM-based
agents for modalities beyond text remains an open
challenge. A key issue in designing MLLM-based
agents for time series analysis is the effective in-
tegration of heterogeneous modalities. It requires
robust mechanisms to align and fuse information
across diverse domains. Furthermore, the complex-
ity of coordinating multiple agents increases with
multimodal inputs, demanding advanced synchro-
nization and communication protocols.
Interpretability and Hallucinations. A key ad-
vantage of MLLMs is their ability to generate
human-readable language, enabling them to pro-
vide explanations for predictions. For example,
LLMs can not only identify the location of an
anomaly but also indicate its severity and offer a
textual explanation (Liu et al., 2024e).

However, the human-readable output also in-
troduces hallucinations (Xu et al., 2025), where
MLLMs generate plausible-sounding responses.
Notably, GPT-4 has been observed to produce
hallucinations in over 21% of time series seg-
ments (Dong et al., 2024). Exploring and devel-
oping techniques to mitigate these hallucinations
remains an important and open research direction.

6 Conclusion

In this survey, we explore the transformative impact
of multimodal LLMs on time series analysis, em-
phasizing diverse modalities of time series. By sys-
tematically categorizing existing work from both
data and model perspectives, we highlight the ver-
satility of time series representations, ranging from
traditional numerical values to text, image, graph,
audio, and table modalities. We also focus on rep-
resentative multimodal LLMs which are applicable
or potential to handle these varied modalities of
time series. We finally identify several promising
research directions and their challenges, including
the video modality, reasoning, agent, interpretabil-
ity, and hallucination. We believe this survey pro-
vides valuable insights and advances time series
analysis in the era of multimodal LLMs.
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Limitations

Several limitations should be acknowledged for
this survey. First, despite our rigorous efforts to
comprehensively review related work, particularly
in the taxonomy of time series modalities, some
relevant studies may have been inadvertently over-
looked. Second, while we define the scope of this
survey, it does not provide an exhaustive collection
of multimodal LLMs; we refer readers to related
surveys in the main content. Lastly, although we
briefly explore new tasks in the future direction,
our primary focus remains on established tasks
such as forecasting, classification, imputation, and
anomaly detection. Investigating novel tasks in the
era of multimodal LLMs presents a promising and
exciting avenue for future research.

Ethical and Broader Impacts

Our survey provides a novel perspective on bridg-
ing time series analysis with multimodal LLMs.
We do not foresee any ethical concerns requiring
special attention. We believe that this survey will
significantly contribute to advancing time series
analysis in the era of multimodal LLMs.
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